

Exploration Systems Mission Directorate Risk Management

NASA Risk Management Conference 2004 October 26, 2004

Vicky Hwa

Realizing the Future Earth, Moon, Mars, and Beyond

Foster and sustain the exploration culture across generations

- Open new frontiers
- Continuing and inspiring
- A constant impetus to educate and train

Identify, develop, and apply advanced technologies to...

- Enable exploration and discovery
- Allow the public to actively participate in the journey
- Translate the benefits of these technologies to improve life on Earth

Harness the brain power

- Engage the nation's science and engineering assets
- Motivate successive generations of students to pursue science, math, engineering and technology
- Create the tools to facilitate broad national technical participation

International Cooperation

- Promote common objectives and cooperative/complementary efforts for space exploration
- Utilize international capabilities to help close capability gaps and develop breakthrough technologies

Exploration Systems Implementation Key Objectives & Milestones

Objectives

- Implement a <u>sustained</u> and <u>affordable</u> human and robotic program
- Extend human presence across the solar system and beyond
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

Major Milestones

- 2008: Initial flight test of CEV
- 2008: Launch first lunar robotic orbiter
- 2009-2010: Robotic mission to lunar surface
- 2011: First uncrewed CEV flight
- 2014: First crewed CEV flight
- 2012-2015: Jupiter Icy Moons Orbiter (JIMO)/Prometheus
- 2015-2020: First human mission to the Moon

Vision Requires System-of-Systems Integration Cross-Agency Coordination & Integration

Transit and Launch Systems

The Human: an Essential Element of the System of Systems

Supporting Research

Technology Options

Commonality/Evolvability
For Future Missions

Risk Management Coverage

Organization

Organization: External Relationships

- Established, core members from Operational Organizations and users
- Provide inputs and independent perspectives
- Exploration Systems Requirements Review Board (ESRRB)
 - Wide, senior membership--includes S&MA officer
 - Review and approve ESMD requirements

Requirements Formulation Overview

eams

Architectural Variants (Examples)

- Moon Short Stay
- Moon Long Stay
- Global Access
- Single Site
- Multiple Sites
- · High-Earth Orbit Libration Points
 - Mars Orbit Mars Short Stay
 - Mars Long Stay

Broad Trades

Technology Infusion (Examples)

- Chemical
- Nuclear
- Fuel Cells
- Solar
- ECLSS Closure
- Open Loop
- Storables
- Cryogenics
- Thermal Protection
- Breakthroughs

Operational Concepts (Examples)

- Pre-Deploy
- All-Up

 Surface Stav **Abort Options**

Convoy

- Lunar Orbit Libration Point
- Staging Altitude
- Tandem
- Staging Strategy

Safety

Effectiveness

Extensibility

Affordability

Libration

Mars Staging

Mars Return

Focused Trades

Architectural Variants (Examples)

- Launch Constraints
 Plane Change
- Return Strategy
- Tandem / Convov
- Staging Altitude
- Surface Strategy
- **Technologies & Sensitivities** (Examples)
- Propellants
- Power
- Crew Size
- Surface stay
- Payload Down
- Pavload Returned
- Launch Frequency Radiation Shielding
- Lunar Short Stay
- Lunar Long Stav
- Polar / Equatorial
- Global Access • ISS (TBD)

Mission Capture

(Examples)

Strategy-to-Task-to-Technology (STT) Decision Panel—(OAG)

Concept of Operations and Draft Requirements

Analysis Multi-Center

Safety-related Measures of Performance

- Risks
- ♦ Hazards
- Aborts
- Redundancy
- Reliability
- Contingencies

- ESMD Program Management Handbook (PMH)
 - Contains overarching guidelines and processes -RM is key
 - Drawing from best practices
 - NASA HQ, NASA Centers, DoD, Industry...
 - One NASA input and coordination from across NASA
 - RM is an integral part of ESMD management rigor
 - Currently in development—planned release early 2005

Risk Management Approach

Variance Analysis,

and Corrective Action

Time Now

Ongoing Activities: Constellation Systems

- Risk-Based Acquisition Management (RBAM) training completed Oct 2004
- Initial acquisition risk lists and mitigation plans have been developed and are being migrated to the ESMD RM IT tool
- ESMD has highlighted risk as a core acquisition concern
 - Lessons-learned from Orbital Space Plane and Next Generation Launch Technology programs
 - Items reviewed and moved to program risk watch lists

Active Risk Manager – Risk Management

Windchill – Document, Configuration
 Management, Process, etc.

Winsight – Earned Value Management

DOORS – Requirements Management

Summary

- Program and Risk Assessment Office Established
- We are developing process definitions for application across the entire portfolio
 - Integrated within overall program management framework
 - Leveraging "best practices"
- We have already begun implementing RM practices in our programs
- Future focus areas:
 - Tightening process definitions
 - Establishing management rigor